Study
Q. Find the derivative of
tan(ax+b) from first principles
Answer.
![]() |
=>f(x) =tan(ax+b)
Because f'(x) = lim f(x+h) -f(x) /h
h->0
== > =lim tan a(x+h) +b -tan (ax+b) /h
h->0
lim tan(ax+ah+b) - tan(ax+b)
h-->0
= ---------------------------------------------
h
lim tan((ax+b) +ah) -tanx(ax+b)
h-->0
=------------------------------------------
h
lim tan(ax+b) + tanah -tan(ax+b)
h->0
-----------------------------
1-tanax+b *tanah
=-------------------------------------------
h
lim tan(ax+b) + tanah -tan(ax+b) +tan^2(ax+b) *tanah
h->0
=-------------------------------------------
h 1-tanax+b *tanah
lim tanah +tan^2(ax+b) *tanah
h->0
=-------------------------------------------
h (1-tanax+b *tanah)
lim tanah (1+tan^2(ax+b) )
h->0
=-------------------------------------------
h (1-tanax+b *tanah)
lim tanah * lim (1+tan^2(ax+b) )
h->0 h->0
=-------------- ---------------------------
h (1-tanax+b *tanah)
1*a* lim (1+tan^2(ax+b) )
h->0
=--------------------------
(1-tanax+b *tanah)
1*a* lim (1+tan^2(ax+b) )
h->0
=--------------------------
(1-tanax+b *tan0)
1*a* lim (1+tan^2(ax+b) )
h->0
=--------------------------
(1-tanax+b *0)
1*a* lim (1+tan^2(ax+b) )
h->0
=--------------------------
(1-0)
=a sec^2(ax+b)
Find the derivative of tan ( a x + b ) from first principles
Reviewed by Shubham Prajapati
on
March 17, 2021
Rating:

No comments:
If you have any doubt so you can comment me then i will 100% help you ,Through comment Chat